博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
第五篇:索引原理与慢查询优化
阅读量:5267 次
发布时间:2019-06-14

本文共 12777 字,大约阅读时间需要 42 分钟。

 

一 介绍

 

为何要有索引?

 

一般的应用系统,读写比例在10:1左右,而且插入操作和一般的更新操作很少出现性能问题,在生产环境中,我们遇到最多的,也是最容易出问题的,还是一些复杂的查询操作,因此对查询语句的优化显然是重中之重。说起加速查询,就不得不提到索引了。

 

什么是索引?

 

索引在MySQL中也叫做“键”,是存储引擎用于快速找到记录的一种数据结构。索引对于良好的性能

非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重要。
索引优化应该是对查询性能优化最有效的手段了。索引能够轻易将查询性能提高好几个数量级。
索引相当于字典的音序表,如果要查某个字,如果不使用音序表,则需要从几百页中逐页去查。

 

30        10                          40   5         15               35          661    6    11   19          21   39     55    100

 

 

 

二 索引的原理

 

一 索引原理

 

索引的目的在于提高查询效率,与我们查阅图书所用的目录是一个道理:先定位到章,然后定位到该章下的一个小节,然后找到页数。相似的例子还有:查字典,查火车车次,飞机航班等

 

本质都是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。

 

数据库也是一样,但显然要复杂的多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段......这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的。而数据库实现比较复杂,一方面数据是保存在磁盘上的,另外一方面为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。

 

二 磁盘IO与预读

 

前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS(Million Instructions Per Second)的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的时间可以执行约450万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。下图是计算机硬件延迟的对比图,供大家参考:

 

 

 

考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。

 

 

 

三 索引的数据结构

 

前面讲了索引的基本原理,数据库的复杂性,又讲了操作系统的相关知识,目的就是让大家了解,任何一种数据结构都不是凭空产生的,一定会有它的背景和使用场景,我们现在总结一下,我们需要这种数据结构能够做些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么我们就想到如果一个高度可控的多路搜索树是否能满足需求呢?就这样,b+树应运而生。

 

 

如上图,是一颗b+树,关于b+树的定义可以参见,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。

 

###b+树的查找过程

如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。

 

###b+树性质

1.索引字段要尽量的小:通过上面的分析,我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。
2.索引的最左匹配特性:当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。

 

 

 

三 MySQL索引管理

 

一 功能

 

#1. 索引的功能就是加速查找#2. mysql中的primary key,unique,联合唯一也都是索引,这些索引除了加速查找以外,还有约束的功能

 

二 MySQL的索引分类

 

普通索引INDEX:加速查找唯一索引:    -主键索引PRIMARY KEY:加速查找+约束(不为空、不能重复)    -唯一索引UNIQUE:加速查找+约束(不能重复)联合索引:    -PRIMARY KEY(id,name):联合主键索引    -UNIQUE(id,name):联合唯一索引    -INDEX(id,name):联合普通索引

 

 

三 索引的两大类型hash与btree

 

#我们可以在创建上述索引的时候,为其指定索引类型,分两类hash类型的索引:查询单条快,范围查询慢btree类型的索引:b+树,层数越多,数据量指数级增长(我们就用它,因为innodb默认支持它)#不同的存储引擎支持的索引类型也不一样InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;

 

四 创建/删除索引的语法

 

#方法一:创建表时      CREATE TABLE 表名 (                字段名1  数据类型 [完整性约束条件…],                字段名2  数据类型 [完整性约束条件…],                [UNIQUE | FULLTEXT | SPATIAL ]   INDEX | KEY                [索引名]  (字段名[(长度)]  [ASC |DESC])                 );#方法二:CREATE在已存在的表上创建索引        CREATE  [UNIQUE | FULLTEXT | SPATIAL ]  INDEX  索引名                      ON 表名 (字段名[(长度)]  [ASC |DESC]) ;#方法三:ALTER TABLE在已存在的表上创建索引        ALTER TABLE 表名 ADD  [UNIQUE | FULLTEXT | SPATIAL ] INDEX                             索引名 (字段名[(长度)]  [ASC |DESC]) ;                             #删除索引:DROP INDEX 索引名 ON 表名字;

 

 

 

四 测试索引

 

1 准备

 

 
View Code

 

2 在没有索引的前提下测试查询速度

 

#无索引:从头到尾扫描一遍,所以查询速度很慢mysql> select * from s1 where id=333;+------+---------+--------+----------------+| id   | name    | gender | email          |+------+---------+--------+----------------+|  333 | egon333 | male   | 333@oldboy.com ||  333 | egon333 | f      | alex333@oldboy ||  333 | egon333 | f      | alex333@oldboy |+------+---------+--------+----------------+3 rows in set (0.32 sec)mysql> select * from s1 where email='egon333@oldboy';....... rows in set (0.36 sec)

 

3 加上索引

 

#1. 一定是为搜索条件的字段创建索引,比如select * from t1 where age > 5;就需要为age加上索引#2. 在表中已经有大量数据的情况下,建索引会很慢,且占用硬盘空间,插入删除更新都很慢,只有查询快比如create index idx on s1(id);会扫描表中所有的数据,然后以id为数据项,创建索引结构,存放于硬盘的表中。建完以后,再查询就会很快了#3. 需要注意的是:innodb表的索引会存放于s1.ibd文件中,而myisam表的索引则会有单独的索引文件table1.MYI

 

 

 

ps:我们可以去mysql的data目录下找到该表,可以看到占用的硬盘空间多了

 

 

 

五 正确使用索引

 

一 并不是说我们创建了索引就一定会加快查询速度,如下索引未命中

 

select sql_no_cache * from s1 where email='xxx'; #命中索引,速度很快select sql_no_cache * from s1 where email like '%old%'; #无法使用索引,速度依然很慢

 

二 覆盖索引与索引合并

 

#覆盖索引:    - 在索引文件中直接获取数据    http://blog.itpub.net/22664653/viewspace-774667/#分析select * from s1 where id=123;该sql命中了索引,但未覆盖索引。利用id=123到索引的数据结构中定位到该id在硬盘中的位置,或者说再数据表中的位置。但是我们select的字段为*,除了id以外还需要其他字段,这就意味着,我们通过索引结构取到id还不够,还需要利用该id再去找到该id所在行的其他字段值,这是需要时间的,很明显,如果我们只select id,就减去了这份苦恼,如下select id from s1 where id=123;这条就是覆盖索引了,命中索引,且从索引的数据结构直接就取到了id在硬盘的地址,速度很快

 

 

 

#索引合并:把多个单列索引合并使用#分析:组合索引能做到的事情,我们都可以用索引合并去解决,比如create index ne on s1(name,email);#组合索引我们完全可以单独为name和email创建索引组合索引可以命中:select * from s1 where name='egon' ;select * from s1 where name='egon' and email='adf';索引合并可以命中:select * from s1 where name='egon' ;select * from s1 where email='adf';select * from s1 where name='egon' and email='adf';乍一看好像索引合并更好了:可以命中更多的情况,但其实要分情况去看,如果是name='egon' and email='adf',那么组合索引的效率要高于索引合并,如果是单条件查,那么还是用索引合并比较合理

 

三 若想利用索引达到预想的提高查询速度的效果,我们在添加索引时,必须遵循以下原则

 

#1.最左前缀匹配原则,非常重要的原则,create index ix_name_email on s1(name,email,)- 最左前缀匹配:必须按照从左到右的顺序匹配select * from s1 where name='egon'; #可以select * from s1 where name='egon' and email='asdf'; #可以select * from s1 where email='alex@oldboy.com'; #不可以mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。#2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式#3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录#4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’);#5.尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可

 

最左前缀示范

 

mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';Empty set (0.39 sec)mysql> create index idx on s1(id,name,email,gender); #未遵循最左前缀Query OK, 0 rows affected (15.27 sec)Records: 0  Duplicates: 0  Warnings: 0mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';Empty set (0.43 sec)mysql> drop index idx on s1;Query OK, 0 rows affected (0.16 sec)Records: 0  Duplicates: 0  Warnings: 0mysql> create index idx on s1(name,email,gender,id); #遵循最左前缀Query OK, 0 rows affected (15.97 sec)Records: 0  Duplicates: 0  Warnings: 0mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';Empty set (0.03 sec)

 

索引无法命中的情况需要注意:

 

- like '%xx'    select * from tb1 where email like '%cn';        - 使用函数    select * from tb1 where reverse(email) = 'wupeiqi';        - or    select * from tb1 where nid = 1 or name = 'seven@live.com';            特别的:当or条件中有未建立索引的列才失效,以下会走索引            select * from tb1 where nid = 1 or name = 'seven';            select * from tb1 where nid = 1 or name = 'seven@live.com' and email = 'alex'                        - 类型不一致    如果列是字符串类型,传入条件是必须用引号引起来,不然...    select * from tb1 where email = 999;    普通索引的不等于不会走索引- !=    select * from tb1 where email != 'alex'        特别的:如果是主键,则还是会走索引        select * from tb1 where nid != 123- >    select * from tb1 where email > 'alex'            特别的:如果是主键或索引是整数类型,则还是会走索引        select * from tb1 where nid > 123        select * from tb1 where num > 123                #排序条件为索引,则select字段必须也是索引字段,否则无法命中- order by    select name from s1 order by email desc;    当根据索引排序时候,select查询的字段如果不是索引,则不走索引    select email from s1 order by email desc;    特别的:如果对主键排序,则还是走索引:        select * from tb1 order by nid desc; - 组合索引最左前缀    如果组合索引为:(name,email)    name and email       -- 使用索引    name                 -- 使用索引    email                -- 不使用索引- count(1)或count(列)代替count(*)在mysql中没有差别了- create index xxxx  on tb(title(19)) #text类型,必须制定长度

 

其他注意事项

 

- 避免使用select *- count(1)或count(列) 代替 count(*)- 创建表时尽量时 char 代替 varchar- 表的字段顺序固定长度的字段优先- 组合索引代替多个单列索引(经常使用多个条件查询时)- 尽量使用短索引- 使用连接(JOIN)来代替子查询(Sub-Queries)- 连表时注意条件类型需一致- 索引散列值(重复少)不适合建索引,例:性别不适合

 

 

 

六 查询优化神器-explain

 

关于explain命令相信大家并不陌生,具体用法和字段含义可以参考官网,这里需要强调rows是核心指标,绝大部分rows小的语句执行一定很快(有例外,下面会讲到)。所以优化语句基本上都是在优化rows。

 

执行计划:让mysql预估执行操作(一般正确)    all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const    id,email        慢:        select * from userinfo3 where name='alex'                explain select * from userinfo3 where name='alex'        type: ALL(全表扫描)            select * from userinfo3 limit 1;    快:        select * from userinfo3 where email='alex'        type: const(走索引)

 

http://blog.itpub.net/29773961/viewspace-1767044/

 

 

 

七 慢查询优化的基本步骤

 

0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)3.order by limit 形式的sql语句让排序的表优先查4.了解业务方使用场景5.加索引时参照建索引的几大原则6.观察结果,不符合预期继续从0分析

 

 

 

八 慢日志管理

 

慢日志            - 执行时间 > 10            - 未命中索引            - 日志文件路径                    配置:            - 内存                show variables like '%query%';                show variables like '%queries%';                set global 变量名 = 值            - 配置文件                mysqld --defaults-file='E:\wupeiqi\mysql-5.7.16-winx64\mysql-5.7.16-winx64\my-default.ini'                                my.conf内容:                    slow_query_log = ON                    slow_query_log_file = D:/....                                    注意:修改配置文件之后,需要重启服务

 

 
日志管理

 

 

 

九 参考博客

 

https://tech.meituan.com/mysql-index.html 

 

http://blog.itpub.net/29773961/viewspace-1767044/

http://www.cnblogs.com/wupeiqi/articles/5716963.html

 

http://www.cnblogs.com/hustcat/archive/2009/10/28/1591648.html

http://www.cnblogs.com/mr-wid/archive/2013/05/09/3068229.html
http://www.cnblogs.com/kissdodog/p/4159176.html
http://blog.csdn.net/ggxxkkll/article/details/7551766
http://blog.itpub.net/26435490/viewspace-1133659/
http://pymysql.readthedocs.io/en/latest/user/examples.html
http://www.cnblogs.com/lyhabc/p/3793524.html
http://www.jianshu.com/p/ed32d69383d2
http://doc.mysql.cn/mysql5/refman-5.1-zh.html-chapter/
http://doc.mysql.cn/
http://www.php100.com/html/webkaifa/database/Mysql/2013/0316/12223.html
http://blog.csdn.net/ltylove2007/article/details/21084809
http://lib.csdn.net/base/mysql
http://blog.csdn.net/c_enhui/article/details/9021271
http://www.cnblogs.com/edisonchou/p/3878135.html?utm_source=tuicool&utm_medium=referral
http://www.cnblogs.com/ggjucheng/archive/2012/11/11/2765465.html
http://www.cnblogs.com/cchust/p/3444510.html
http://www.docin.com/p-705091183.html
http://www.open-open.com/doc/view/51f552745f514bbbaf0aaecf6c88509a
http://www.open-open.com/doc/view/f80947a5c805458db8cf929834d241bf
http://www.open-open.com/lib/view/open1435498096607.html
http://www.open-open.com/doc/view/48c510607ab84fd8b87b158c3fe9d177
http://www.open-open.com/lib/view/open1448032294072.html
http://www.open-open.com/lib/view/open1404887901263.html
http://www.cnblogs.com/cchust/p/3426927.html
http://wribao.php230.com/category/news/1138254.html
http://www.iqiyi.com/w_19rqqds1ut.html
http://wenku.baidu.com/link?url=7Grxv0cQ_a00Ni2ZEU_cbDk2Wd2VTzlnS2UPKST3OF4oDqoLUQ2rQpOmK8ap12RDnXbnNs6gbY8DXVvWmo9bMxjWGS_vkhYus22ghAZYuES
http://www.cnblogs.com/edisonchou/p/3878135.html
http://blog.chinaunix.net/uid-540802-id-3419311.html
http://my.oschina.net/scipio/blog/293052
http://blog.itpub.net/29773961/viewspace-1767044/
http://my.oschina.net/lionets/blog/407263

 

转载于:https://www.cnblogs.com/flying1819/articles/8078768.html

你可能感兴趣的文章
MetaWeblog API Test
查看>>
反弹SHELL
查看>>
关闭Chrome浏览器的自动更新和升级提示
查看>>
移动、尺寸改变
查看>>
poj2255Tree Recovery【二叉树重构】
查看>>
tcpcopy 流量复制工具
查看>>
vue和react的区别
查看>>
第十一次作业
查看>>
负载均衡策略
查看>>
微信智能开放平台
查看>>
ArcGIS Engine 中的绘制与编辑
查看>>
Oracle--通配符、Escape转义字符、模糊查询语句
查看>>
c# 文件笔记
查看>>
第一页 - 工具的使用(webstorm)
查看>>
Linux 进程资源用量监控和按用户设置进程限制
查看>>
IE浏览器整页截屏程序(二)
查看>>
D3.js 之 d3-shap 简介(转)
查看>>
制作满天星空
查看>>
类和结构
查看>>
CSS3选择器(二)之属性选择器
查看>>